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Abstract—  In this paper, the chaos control and the synchronization of two fractional-order Economic chaotic systems studied. According 
to the Lyapunov stabilization theory and the adaptive control theorem, the adaptive control rule is obtained for described error dynamic 
stabilization. Finally, the numerical simulation illustrates the efficiency of the proposed method in synchronizing two chaotic systems 
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1 INTRODUCTION                                                                     
he chaotic behavior of dynamic systems can be observed 
in several real applications in the world, such as circuits, 
mathematics, power systems, medicine, electrochemical 

biology, etc. [1, 2]. Thus, chaos is one of the most interesting 
subjects to attract the experts from various fields of study. The 
fractional calculus established about 300 years ago. But, its 
applications in physics and engineering have been studied just 
in recent decades. Most of the practical and industrial systems 
could be modeled with fractional-order derivations [14]. Re-
cently, the control and synchronization of chaotic systems is 
one of the most appealing subjects, which have attracted many 
scientists [15]. For instance, in [3], the stabilization of an inte-
grated fractional-order chaos system is studied. In [4], the sta-
bilization of the fractional-order system by using the active 
control method is investigated. In [5], a method for the stabili-
zation of a fractional-order system based on the active sliding 
mode is presented. In [6], the Routh-Horvitz method in frac-
tional-order systems is used to synchronize the Duffing-
vander Pol fractional-order chaos system. In [7], a smart re-
sistant fractional-order sliding level is determined and the 
sliding control is studied for a non-linear system. In [8], a new 
hyper chaotic fractional-order system is presented and the 
synchronization of a class of non-linear fractional-order sys-
tems is considered. In [9], the adaptive sliding mode control 
for a new class of chaotic fractional-order systems, which are 
non-deterministic are proposed. For this aim, the fractional-
order derivation is used to produce sliding level. In [10], the 
authors analyze the behavior of fractional-order chaos sys-
tems, investigating the stabilization conditions by using the 
projective method. In [11], a simple but efficient way to control 
the fractional-order chaos system, using the TS fuzzy model 
and adaptive regulation mechanism is presented. In [12], the 
second-order sliding mode control to stabilize one class of 
non-deterministic fractional-order system with external dis-
turbances is studied. In [13], an adaptive fractional-order 

feedback controller to stabilize the chaos systems is presented. 
Then, a simple but practical method to synchronize the frac-
tional-order chaos system is investigated.  
In this paper, a fractional-order chaos system with unknown 
parameter is considered, for which the adaptive controller is 
designed. Using the Liapanov theory and the appropriate 
adaptive rule, the control rule is proved. The organization of 
this paper is as follows: In part II the basic concepts of calculus 
is presented. In section III, the problem is introduced. Section 
IV includes the process of obtaining the adaptive control and 
the parameter estimation rule to synchronize the fractional-
order chaos system with unknown parameters. In Section V, 
the simulation results of the proposed method performance 
are presented. Section VI contains the conclusion of appropri-
ate performance of this method to synchronize the fractional-
order chaos systems. 

 

MATHEMATICAL PRELIMINARIES  
The derivative-integrator operator is represented by 

q
a tD , which is used to show the fractional derivation 
and integral operator. For the positive values of q, it is 
a derivation symbol and for the negative values of q it 
turns into an integral symbol. The definitions usually 
used for the fractional derivation are Grunwald–
Letnikov, Riemann-Liouville and Caputo.  
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The second definition of Riemann-Liouville [14] is the 
definition of RL, which is known as the simplest one 
as follows: 
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where, 1n q n− < <  and (.)Γ  is the Gamma function.  

 

THE PROBLEM DESCRIPTION 
Designing an adaptive controller for the synchroniza-
tion of a chaos system: 
In order to synchronize the behavior of chaotic sys-
tem, the Economic system with three degrees of free-
dom is defined by the following equations: 
 
 
 
 
 
 
where, x, y,z are the state variables and , ,a b c R∈  are 
the system parameters.  
To synchronize two systems, The Master system is 
defined as follows: 

 
 

where, z1, y1, x1 are the Master system variables and 
1 2 3, ,q q q  is the order of fractional derivation. The 

Slave system is as follows: 
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where, z2, y2, x2 are the variables of Slave system, 

1 2 3, ,q q q  represents the order of fractional derivation 
and the design control signal to synchronize two sys-
tems are defined by u1,u2,u3. 

ADAPTIVE CONTROLLER DESIGN 
In this section, the synchronization of two chaotic sys-
tems with unknown parameters are studied.  
Define 
 
   x 2 1 y 2 1 z 2 1e = x - x ;   e = y - y ;   e = z - z ;          (6)                                       
                                                                                                           
By subtracting Eq. 4 from Eq. 5, the error dynamic 
equation is obtained as follows: 
 
 
 
 
 
 

      
Theorem: If the control rule is 
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where, 𝐴1,𝐴2,𝐴3 are the positive coefficients, then the 
states of system in Eq. 5, are approximated asymptoti-
cally to the states of system in Eq. 4.  
Proof: To prove the synchronization of two systems in 
Eq. 4 and Eq. 5, using the control rule equation shown 
in Eq. 8 , the stabilization of system must be investi-
gated. For this aim, the desired Lyapunov function 
should be definite positive with negative definite deri-
vation along the trajectory of the system. 
The Lyapunov function is defined as follows: 

     

( )2 2 2 2 2 2 (9)x y z
1V = e +e +e +a + +                           b
2

c                                                                  

By differentiation from Eq. 9, we derive: 
 
 
 
 
Substituting Eq. 7 in Eq. 10, we have 
 
 
 
 
 
 
 
The control inputs uR1R, uR2R, uR3 Rmust be selected, so that 
the values of V and V are the definite positive and 
negative respectively. Thus, by substituting uR1R, uR2R, uR3 
Rfrom Eq. 8 and the parameters estimation rules in Eq. 
9 into Eq. 11, the following relation is achieved: 

      ( )122 2 2
1 x 2 y 3 zV = -A e - A e - A e < 0                                                                                                                   

Therefore, the available control rule shown in Eq. 8, 
the system states in Eq. 5 are asymptotically approxi-
mated by the system states of Eq. 4. In other word, 
resulting in the approximated zero synchronization 
error. 

NUMERICAL SIMULATIONS 
At this section, the efficiency of our proposed method 
is assessed. The simulation results are performed on 
the synchronization of Economic- fractional chaotic 
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systems with different initial states. In this simulation, 
the sampling time and the order of fractional deriva-
tion are defined as h=0.001 and 

1 2 30.84, 0.82, 0.80q q q= = =  respectively. The initial 
states are as follows: 
 
      1 1 2 1 3 1

1 1 1[ , (0), (0) 2,3,2](0) ] [q q q T Td x d y d z− − − =  
       1 1 2 1 3 1

2 2 2[ , (0), (0) 3,4,3](0) ] [q q q T Td x d y d z− − − =  
 
For some specific values of 𝑎, 𝑏, 𝑐,  the system identi-
fied with Eq. 3 is turned to be a chaotic system whose 
states’ behavior for the values of 

3.2, 1.01, 1.05,a b c= = =  are illustrated in Fig. 1. In 
addition, its chaotic behavior and butterfly effect 
treatment are depicted in the same figure. In Fig. 2, the 
synchronization performance of fractional-order cha-
otic systems in Eqs 4 and 5 are presented for all possi-
ble states. According to Fig. 3, it is evident that the 
synchronization error converges to zero. In Fig. 4, the 
control signal for three states is plotted. 

 
 

 

 

 

 

 
a :The chaotic trajectory of Eq. 3 for states y, z 

 
b :The chaotic trajectory of Eq. 3 for states x ,z 

 
c : The chaotic trajectory of Eq. 3 for states y, x 

Fig. 1. (a,b,c) The chaotic trajectory of Eq. 3 for three states 

 
a :The synchronization performance of fractional-order chaotic systems 

shown in Eqs. 4 and 5 for  x1, x2 

 
b :The synchronization performance of fractional-order chaotic systems 

shown in Eqs. 4 and 5 for y1,y2 

 
c :The synchronization performance of fractional-order chaotic systems 

shown in Eqs. 4 and 5 for z1,z2 

Fig. 2: (a,b,c ):The synchronization performance of fractional-order chaotic 
systems in Eqs. 4 and 5 for three states 

 
a :The synchronization error of fractional-order chaotic system for state x 
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b :The synchronization error of fractional-order chaotic system for state y 

 
c :The synchronization error of fractional-order chaotic system for state z 

Fig. 3. (a,b,c): The synchronization error of fractional-order chaotic system 
for three states 

 
a :The control signal u1 

 
b : The control signal u2 

 
c : The control signal u3 

Fig. 4. (a,b,c) The control signal performance for three states 

 CONCLUSION 
In this paper, the synchronization issue of fractional-
order chaotic systems by using the adaptive control 
method has been investigated. According to the stabi-
lization theory of Lyapunov and the adaptive control 
theory, a controller was designed to stabilize and syn-
chronize fractional-order chaotic systems. In addition 
to obtain an adaptive control rule, the synchronization 
rule for unknown parameters of the system was also 
presented. Finally, the simulation results demonstrated 
the appropriate performance of this method in order to 
synchronize the fractional-order chaotic systems.  
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